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Abstract: Thiosemicarbazones of alkanals and their 4-substituted derivatives
generate in trifluoroacetic acid the three-component equilibrium between one
linear and two cyclic (1,3,4-thiadiazolidine and 1,2,4-triazoline) forms.

Products of the interaction between derivatives of thiosemicarbazide and
oxocompounds can exist both in the linear form A and forms of derivatives of
1,2,4-triazolidine-3-thione B! or 1,3,4-thiadiazolidine-2- imine C2 . The structure of
triazolidinethione B is typical for the condensation products of 2,4-disubstituted
thiosemicarbazides with ketones®. In a solution of trifluoroacetic acid cations B*HX
undergo recyclization into the salts of 1,3,4-thiadiazoline-2-amine C*HX, which also
result from the protonation of linear thiosemicarbazones A . In principle this
recyclization implies the possibity of realization of the three-component equilibrium
B*HX —— A*HX —— C*HX
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1R'=CH;, R? =H; 2R! =R? =CH;; 3R! =CH;, R®* =CH,C:H;s; 4 R! =CH;,
R? =C¢Hs; 5R! =C:Hs, R =H; 6R! =C;H;s, R? =CH.CsHs; 7 R! =CH(CH,),,
R? =H; 8R! =C{H/OCH:-4,R? =H; 9R' =R? =CH;; 1-8R=H,9R=CH;
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It takes a few days for reaching this equilibrium in saturated
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aldothiosemicarbazones 1-7 in trifluoroacetic acid.

solutions 'of

Table 1. 14 NMRData of Thiosemicarbazones 1-9 in Saturated Solutions
in CF3 COOH, ppm (3)
Compound Form, % R! R2 CH
1 A*HX, 10 2.08d — 745q
B*HX, 10 1.50d —_ 5.85q
C*HX, 80 1.30d — 505q
2 A*HX, 10 2.24d 294d 7.52q
‘B*HX, 10 1.68d 2945 592q
. C*HX (Z), 45 150d 293d 522q
C*HX (E), 35 148d 2.86d 5.19¢
3 A*HX, 10 196d 425d 732q
B*HX, 10 132d 4205 562q
C*HX, 802 1.15d 4.15d 496 q
4 A*HX, 10 2.05d 71-7.7m 7.50q
B*HX, 10 146d 7.1-77m 570q
C*HX, 80 120d 7.1-77m 501q
5 A*HX, 5 0.821,2.4-27 m — 7.381
B*HX, 5 b — 5.80t
C*HX, 90 0.65t,14-1.8 m — 4951
6 A*HX, 10 098t,2.4-2.7m 432 d 7401t
70-72m
B*HX, 10 b b 5.80t
C*HX (Z),55 0.721,1.5-19m 430d 4951
7.0-72 m
C*HX (E),25 0.70t,1.5-19m 430d 4931
70-72m
7 A*HX, 5 0.85d,2.7-3.1m — 7.20d
B*HX, 5 b — 5.75d
C*HX, 90 0.60d,1.5-1.9m — 4704
8 A*HX, 45 3.595,6.754d, — 715s
7.85d
C*HX, 55 3.595,6.72 d, — 6.73s
7154
9¢ C*HX, 100 132d 2.80d 496 q

260% of Z-form and 20% of E-isomer (from *C-NMR data). "Immersed in the
other protons. *R — 3.01s.
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A weak field signal of H-C=N at 7.2-7.5 ppm in 1H NMR spectra (table 1), and two
signals of sp? carbon atoms at 154-160 and 167-170 ppm in '3C NMR spectra (table 2)
correspond to the linear tautomer A*HX. The comparison of these with the chemical shifts
of signals of carbon atoms in the C=N and C=N' bonds for
S-methylethylidenisothiosemicarbazonium jodide* (1547 and 1685 ppm
correspondingly) leads to the conclusion that the linear form resulting from the protonation
of compounds 1-7 is azinethiol A*HX.

Table 2. 13C-NMR Data of Thiosemicarbazones 14, 8 in Saturated Solutions
in CF3 COOH, ppm (9)

Compound Form CH,d C=S(= N+), S R! ,q R?

1 A*HX 155.7 169.5 16.2 —
B*HX 74.6 1819 236 —
C*HX 69.9 176.2 17.8 -

2 A*HX 154.1 167.3 16.1 346q
B*HX 739 181.9 236 305q
C*HX (Z) 703 178.3 17.6 346q
C*HX (E) 69.5 174.1 17.6 309q

3 A*HX 154.5 169.5 16.2 49.5t,125.7-136.0
B*HX 736 183.2 235 48.8t,125.7-136.0
C*HX (Z) 70.3 1773 17.6 5291, 125.7-136.0
C*HX (E) 69.0 1729 17.6 4891, 125.7-136.0

4 A*HX 155.6 170.2 16.8 122.0-137.0
B*HX : 729 181.2 23.7 122.0-137.0
C*HX 69.5 1753 17.8 122.0-137.0

84 A*HX 1479 168.3 . 554 —
C*HX 82.0 1722 553 —

*Caom: A*HX —115.8d, 126.0 d, 130.8 5, 166.7 s; C*HX—115.3 d, 1200 d,
137.5 5, 161.8 s.

The prevailing in the equilibrium is the protonation form C*HX of compounds
1-7, which tends to become the only one with dilution. 1‘SN NMR spectra confirms
this for substance 1where three signals appear at 90.2,111.8 and 141.2 ppm (NH3
-scale), in  good . agreement w1th reported data for cation of
3,5,5-trimethyl—1,3,4—thiadiazoline—2—methylaminesa. v

First of these signals is triplet (J=90.4 Hz), induced by the nitrogen atom of the
exocyclic aminogroup and the two other signals are singlets, corresponding to N-3 and

N-4 nitrogen atoms. The absence of spin-spin interaction with protons is due to an
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exchange of protons with a solvent, confirmed by THNMR spectra, having only the peaks,
corresponding to C-H bonds and a broad singlet of the exocyclic aminogroup at 7.5-8.5
ppm. 13c NMR spectra of these salts C*HX have doublets, corresponding to carbon
atom C-5 (69.5- 70.5 ppm) and singlets of the C=N* bond (173-179 ppm)3°.

The tautomer C*HX of compounds 2,3 and 6 is a mixture of ZE-isomers,
resulting from rotation around the C-2 - N-exo bond, causing the doubling of all signals
of this formin 'Hand 13CNMR spectra. Coalescence effects take place on heating to
80° C. The lower field signal of two, may be ascribed to the Z-form caused by electronic
effects of the positively charged nitrogen atom. Percentage of Z-form in creases with
enlarging of substituents R? (45% for 2, 60% for 3, 55% for 6) therefore the salt C*HX
of 4 is represented only as Z-isomer.

Peaks of carbon atoms of the C-5 and C=S bond in 13C NMR spectra
(72.9-74.6 and 181.2-183.2 ppm respectively) correspond to the minor cyclic form
B*HX; their chemical shifts are similar to those for cation of
2,4,5,5-tetramethyl-1, 24—tr1azohd1ne-3-th10ne . The typical spectra of 2 present

on figure 1.
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C*HX (Z,E) HX
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£ T H T T 1 T H
7 6 s 4 3 2 1 ppm
C*HX (ZE)
C*HX (Z)
13
NMR *C C*HX (Z)
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Figure 1. 1H and '3C NMR spectra of 2 in CF3 COOH.
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The three-component equilibrium A*HX — B*HX — C*HX is limited only
to the thiosemicarbazones of alkanals 1-7. Percentages of the linear tautomer and
1,2,4-triazolidine are similar and amount to about 5-10% (table 1). Replacement of an
alkyl subtituent R! by aromatic radical leads (8) to disappearance of the 1,2,4-triazolidine
form, and, either use of thiosemicarbazone of acetone?’a or introduction of a substituent
at the position 2 (9) both stabilize the tautomer C*HX.

Thus the chemical constitution of thiosemicarbazones depends on structure and
medium effects in a complicated way. The canonical linear structure have only the
condensation products of thiosemicarbazide and of its 4-substituted analogs with
aldehydes and ketones and of aromatic aldehydes with 2,4-disubstituted thiosemicarbazides
in solid state and in neutral and basic solvents. The so-called 2,4-disubstituted
thiosemicarbazones of ketones have in fact the structure of the corresponding
1,2,4-thiazolidine-3- thiones in a crystalline state as well as in neutral and basic
media®®. In CF3COOH solutions thiosemicarbazones of aliphatic ketones just like the above
mentioned 1,2,4-thiazolidine-3-thiones change into the salts of 1,3,4- thia-
diazolidine-2-imines®®3°. In the same conditions thiosemicarbazones of substituted
benzaldehydes and acetophenones involve ring-chain tautomeric mixtures of linear
cation and 1,3,4-thiadiazolidine-2-iminic ions, whereas in the case of thiosemicarbazones
of aliphatic aldehydes 1-7 one more cyclic form, viz. 1,2,4-triazolidine-3-thionium cation,
is involved in this equilibrium as we showed.

The discovered property is one more example of the ring-ring or chain- ring-ring
tautomerism, the latest examples of which were recently reported6’7. These data, in
conjunction with the known ones 8 show, that this phenomenon is not to be
considered a rare one, though asa rule researchers underestimate it.

Experimental

The 'H NMR (100 MHz) and '3C NMR (20.41 MHz) spectra were recorded with
Tesla-BS-497 spectrometer using HMDS as internal standard. The 15N NMR spectra
(30.4 MHz) were recorded with VXR-300 Varian spectrometer, chemical shifts were
measured against CH3NO2 and converted to the NH3-scale. The purity of the compounds
was checked by tlc using Silufol-UV-254 plates. The elemental analysis data (C, H, N, S)
of the new compounds agreed with calculated values to within 0.2%. Melting points were
determined in capillaries and are uncorrected.
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Aldehyde thiosemicarbazones 1-9.

A mixture of thiosemicarbazide (0.05 mole) and aldehyde (0.06 mole) in 50 ml of
methanole was allowed to stand for 24h at O °C, then solvent was removed and the
residue was recrystallized from methanole.

1—138-139°C% ,2—114-116°C% ,3 —116-117°C, 4—145-146°C°",

5-161°C%, 6 —108-109°C, 7—90-92°C% ,8—173-175°C¥

9 —56-58°C %8,
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